BIONEDICAL ENGINEERING UNPACKED TALIYA WEINSTEIN AUG 2022

The Line Up

- Why should I consider engineering as a career?
- What does a career in engineering look like?
- What is biomedical engineering?
- What steps do I need to take to be a biomedical engineer?
- What is the engineering design process?
- How can I solve a biomedical engineering problem?

"Your Attitude Defines Your Experience"

- Engagement
- Curiosity
- Communication
- Willingness to try
- Excitement

The Kick Off

What is Engineering?

TeachEngineering (2018) What is Engineering? Available at: https://www.youtube.com/watch?v=HgVDkvgGmVo&t=2s&ab_channel=TeachEngineering (Accessed 17 July 2022).

Sure, but What is Engineering?

 "Engineering provides a platform to contribute to society by doing meaningful work. It allows for a more efficient future through the use of say, renewable energy or designing prosthetic limbs — the possibilities are endless!" – Hiba Abadir

Engineering Skills

- Creativity
- Curiosity
- Pressure Management
- Communication

- Teamwork
- Analysis
- Problem Solving
- Technical Skills

Is Engineering Right for You?

- 1) Do you want to make the world a better place?
- 2) Do you have creativity and imagination?
- 3) Are you able to process detail?
- 4) Do you enjoy problem solving?
- 5) Can you work in a group?
- 6) Are you able to communicate your ideas?
- 7) Do you want to use math/ science as a tool for solving real world problems?

Any Questions?

What is Biomedical Engineering?

National Science Foundation (2011) What does a biomedical engineer do? Careers in Science and Engineering. Available at: https://www.youtube.com/watch?v=XNXY6TfaUO4&t=93s&ab_channel=NationalScienceFoundation (Accessed 17 July 2022).

Breaking Down Biomedical Engineering

Biomechanics

Biomechanics

Neural Engineering

Biomechanics

Neural Engineering

Biomaterials and Regenerative Engineering

Biomechanics

Neural Engineering

Biomaterials and Regenerative Engineering

Medical Physics

Biomechanics

Neural Engineering

Biomaterials and Regenerative Engineering

Medical Physics

Computational Biomedical Engineering

Biomechanics

Neural Engineering

Biomaterials and Regenerative Engineering

Medical Physics

Computational Biomedical Engineering

Medical Devices and Instrumentation

Biomedical Engineering Considerations

- Financial Cost
- Time to develop
- Human Safety
- International Medical Standards
- Whether People Will Adopt the Solution

Biomedical Career Options

- Industry
- Academia / Researcher
- Government
- Start-ups
- Venture funding
- Medical equipment sales

Any Questions?

Let's Discuss!

- What biomedical problems would you want to solve ?
- How would you approach solving them?
- What possible limitations are there currently to solving this issue?
- Can you brainstorm some ways of tackling these limitations?

Knowledge Exchange

How Can We Approach Problem Solving?

Iterative Problem Solving

Iterative Problem Solving

Any Questions?

Activity Introduction: Pulse Monitoring

Activity: Ask Phase

• How can we measure pulse rate inexpensively and with minimal time investment?

Constraints:

- Cost
- Development time of 2 hrs
- User friendly design and approach

Activity: Research Phase

• How do smart watches measure pulse rate?

Dr Yo (2019) How Smart Watch Monitor Heart Rate? | Photoplethysmography. Available at: https://www.youtube.com/watch?v=QTniLL0sQtA&t=83s&ab_channel=Dr.Yo (Accessed 17 July 2022).

PPG Unpacked

Any Questions?

Activity: Imagine Phase

• Possible solutions using our constraints?

Activity: Imagine Phase

Not Using PPG

- Very sensitive vibration sensor on wrist
- A miniaturised stethoscope that sticks onto your chest

Using PPG

- An clip-on earring based transmission PPG device
- A miniaturised light and detector face sticker with PPG abilities
- A finger based PPG

Activity: Imagine Phase

Not Using PPG

- Very sensitive vibration sensor on wrist
- A miniaturised stethoscope that sticks onto your chest
- A form of an ECG device

Using PPG

- An clip-on earring based transmission PPG device
- A miniaturised light and detector face sticker with PPG abilities
- A finger based PPG

Light Sensor

Light Source

C++ Rules:

- End your coding instructions with
- Variables have limited scope
- Every bracket needs its partner
- Comments for code are represented with

Any Questions?

😳 sketch_jul15a | Arduino 1.8.19 (Windows Store 1.8.57.0)

File Edit Sketch Tools Help

sketch_jul15a §		

void setup() (

// put your setup code here, to run once:

}

void loop() (

// put your main code here, to run repeatedly:

1

🞯 sketch_jul15a | Arduino 1.8.19 (Windows Store 1.8.57.0)

File Edit Sketch Tools Help

sketch_jul15a §

void setup() (

// put your setup code here, to run once:

}

void loop() (

// put your main code here, to run repeatedly:

1

😳 sketch_jul15a | Arduino 1.8.19 (Windows Store 1.8.57.0)

File Edit Sketch Tools Help

sketch_jul15a §		

void setup() {

// put your setup code here, to run once:

}

void loop() {
 // put your main code here, to run repeatedly:
}

Group Creation

Activity: Create, Test and Improve

Getting Started:

• Connect Micro USB to Adafruit Board and USB to computer

Activity: Create, Test and Improve

Activity Breakdown

1) Getting the light source working

- Controlling different light sources
- Working with different colours
- Controlling brightness

2) Understanding how the light detector works

- 3) Plotting results
- 4) Putting it all together!

Any Questions?

Getting on the Same Page

Getting on the Same Page

Getting on the Same Page

Any Questions?

Lets Reflect!

- What did you most enjoy about the activity?
- What did you find most challenging?
- How could you improve your approach in future?

Routes to Pursue Biomedical Engineering

- Math and Science
- Biology and FS Math

University: South Africa

- Only Wits offer a biomed + electrical undergrad = 5 years
- Otherwise 4 year engineering
- 1-2 year postgrad also an option

University: Overseas

 Can do 4 year undergrad in biomedical engineering directly

Any Questions?

Wrap Up

- Engineering as a Field
- Biomedical Engineering
- Careers in Biomedical Engineering
- Approaches for Biomedical Problems
- Engineering Design Process
- Solving a Biomedical Problem

References

Caplan, A., 2020. *Top 10 Biomedical Issues of the Next Decade*. [online] Genetic Engineering and Biotechnology News. Available at: https://www.genengnews.com/commentary/point-of-view/top-10-biomedical-issues-of-the-next-decade/> [Accessed 17 July 2022].

Carnegie Mellon University. 2022. Computational Biomedical Engineering - Biomedical Engineering - College of Engineering - Carnegie Mellon University. [online] Available at: [Accessed 17 July 2022].

Cavaco, J., 2018. *Diastole vs. systole: What is the difference?*. [online] Medical News Today. Available at: https://www.medicalnewstoday.com/articles/321447#differences [Accessed 17 July 2022].

Ghamari, M., 2018. A review on wearable photoplethysmography sensors and their potential future applications in health care. *International Journal of Biosensors & Complexing*, 4(4).

Low, L., 2022. *Women make great engineers: 4 students explain why*. [online] The University of Sydney. Available at: https://www.sydney.edu.au/news-opinion/news/2018/12/19/women-make-great-engineers--4-students-explain-why.html [Accessed 17 July 2022].

Lucas, J., 2022. What is Engineering? | Types of Engineering. [online] Live Science. Available at: https://www.livescience.com/47499-what-is-engineering.html [Accessed 17 July 2022].

Michigan Technological University. 2022. What Is Biomedical Engineering? | Michigan Technological University. [online] Available at: https://www.mtu.edu/biomedical/department/what-is/ [Accessed 17 July 2022].

Newland, J., 2018. *CircuitPlaygroundExpressPPG*. https://github.com/jimmynewland/paths-up-expeditions-in-computing-ret2018/blob/master/CircuitPlaygroundExpressPPG.ino.

Northwestern University. 2022. Research Areas | Research | Biomedical Engineering | Northwestern Engineering. [online] Available at: https://www.mccormick.northwestern.edu/biomedical/research/areas/> [Accessed 17 July 2022].

Rice University, 2020. *Visualize Your Heartbeat - Maker Challenge*. [online] Teach Engineering. Available at: <a href="https://www.teachengineering.org/makerchallenges/view/rice3-2349-heartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-heartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-leartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-leartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-leartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-leartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-leartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-leartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-leartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-leartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-leartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-leartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-leartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-leartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-leartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-leartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-leartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-leartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-leartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-leartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-leartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-leartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-leartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-leartbeat-microcontroller-led-senor-design-challenges/view/rice3-2349-leartbeat-microcontroller-leartbeat-microcontroller-leartbeat-microcontroller-leartbeat-microcontroller-leartbeat-microcontroller-leartbeat-microcontroller-leartbeat-microcontroller

Segrest, M., 2022. *Women Excel in Engineering - Introduce a Girl to Engineering Program — Navigate Content*. [online] Navigate Content. Available at: https://www.navigatecontent.com/blog/introduce-girl-to-engineering-stem> [Accessed 17 July 2022].